ITACONIC ACID

PRODUCT IDENTIFICATION

CAS NO. 97-65-4
EINECS NO. 202-599-6

FORMULA HOOCCH₂C(=CH₂)COOH

MOL WT. 131.10 H.S. CODE 2917.19

TOXICITY

SYNONYMS Methylenesuccinic acid; Methylene Butanedioic acid;

Propylenedicarboxylic acid; 2-Propene-1,2-dicarboxylic acid;

DERIVATION

CLASSIFICATION

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE white crystalline powder

MELTING POINT 165 - 169 C

BOILING POINT

SPECIFIC GRAVITY 1.5 - 1.6 SOLUBILITY IN WATER 8 - 9.5 %

SOLVENT SOLUBILITY Soluble in alcohol, slightly soluble in organic solvents

рН

VAPOR DENSITY REFRACTIVE INDEX NFPA RATINGS FLASH POINT

STABILITY Stable under ordinary conditions, Hydroscopic

GENERAL DESCRIPTION & APPLICATIONS

Itaconic Acid (also called Methylene Succinic Acid) is a white crystalline carboxylic acid obtained by the fermentation of carbohydrates. It is soluble in water, ethanol and acetone. Unsaturated solid bond makes a conjugated system with carbonly group. It is used in the field of;

- Co-monomer to prepare acrylic fibers and rubbers, reinforced glass fiber, artificial diamonds and lens
- Additive in fibers and ion exchange resins to increases abrasion, waterproofing, physical resistance, dying affinity and better duration
- Water treatment system to prevent contamination by metallic alkali
- As binder and sizing agent in non-weaving fibers, paper and concrete paint.

The end applications of itaconic acid and its esters include in the field of co-polymerizations, plasticizers, lubricant oil, paper coating, carpets for better duration, adhesives, coatings, paints, thickener, emulsifier, surface active agents, pharmaceuticals and printing chemicals.

SALES SPECIFICATION APPEARANCE

APPEARANCE	white crystalline powder	
PURITY	99.5% min	
MELTING POINT	165 - 169 C	
LOSS ON DRYING	0.3% max	
residue on Ignition	0.03% max	
IRON (as Fe)	10ppm max	
CHLORIDE (as CI)	10ppm max	
SULPHATE (as SO4)	50ppm max	
HEAVY METALS (as	10ppm max	

TRANSPORTATION

PACKING 25kgs in bag HAZARD CLASS Not regulated UN NO.

OTHER INFORMATION

Hazard Symbols: XI, Risk Phrases: 33/36/37/38, Safety Phrases: 24/25

GENERAL DESCRIPTION OF DICARBOXYLIC ACID

Dicarboxylic acid is a compound containing two carboxylic acid, -COOH, groups. Examples are shown in table.

compound. They can yield two kinds of salts, as they contain two carboxyl groups in its molecules.

Structure & Length	Common Name	Formula	Melting Point
Straight C2	Oxalic Acid (Ethanedioic Acid)	HOOCCOOH	187 C
Straight C3	Malonic Acid (Propanedioic Acid)	HOOCCH ₂ COOH	136 C
Straight C4	Succinic Acid (Butanedioic Acid)	HOOC(CH ₂) ₂ COOH	190 C
Straight C5	Glutaric Acid (Pentanedioic Acid)	HOOC(CH ₂) ₃ COOH	99 C
Straight C6	Adipic Acid (Hexanedioic Acid)	HOOC(CH ₂) ₄ COOH	152 C
Straight C7	Pimelic Acid (Heptanedioic Acid)	HOOC(CH ₂) ₅ COOH	106 C
Straight C8	Suberic Acid (Octanedioic Acid)	HOOC(CH ₂) ₆ COOH	143 C
Straight C9	Azelaic Acid (Nonanedioic Acid)	HOOC(CH ₂) ₇ COOH	106 C
Straight C10	Sebacic Acid (Decanedioic Acid)	HOOC(CH ₂) ₈ COOH	134 C

There are almost infinite esters obtained from thousands of potential starting materials. Esters are formed by removal of water from an acid and an alcohol, e.g., carboxylic acid esters, phosphoric acid esters, and sulfonic acid esters. Carboxylic acid esters are used as in a variety of direct and indirect applications. Lower chain esters are used as flavouring base materials, plasticizers, solvent carriers and coupling agents. Higher chain compounds are used as components in metalworking fluids, surfactants, lubricants, detergents, oiling agents, emulsifiers, wetting agents textile treatments and emollients, They are also used as intermediates for the manufacture of a variety of target compounds. The almost infinite esters provide a wide range of viscosity, specific gravity, vapor pressure, boiling point, and other physical and chemical properties for the proper application selections.